## For a polynomial p(x), the value of p(3) is -2. Which of the following must be true about p (x) ?

Hi Mike, can you explain #29 Section 4, October 2022 SAT?

For a polynomial p(x), the value of p(3) is -2. Which of the following must be true about p (x) ?

A) x -5 is a factor of p(x).
B) x -2 is a factor of p(x).
C) x +2 is a factor of p(x).
D) The remainder when p(x) is divided by x -3 is -2.

## Mike…check the wording on this Q (#37; section4). I lose track of what it’s asking for. Can you break it down? Tks!

Mike…check the wording on this Q (#37; section4). I lose track of what it’s asking for. Can you break it down? Tks!

The value of r is 20/21 times the value of t, where t>0. The value of t is what percent greater than the value of r?

## Hey Mike! Is this a corresponding coefficients question?

Hey Mike! Is this a corresponding coefficients question? Can you solve please? Thanks! (#36 Section 4)

-9x + 24qx = 36

In the given equation, q is a constant. The equation has no solution. What is the value of q?

## Hi Mike, Can you explain this Q #29 from Calculator section of Oct 2022 PSAT?

Hi Mike,
Can you explain this Q #29 from Calculator section of Oct 2022 PSAT:

A quadratic function can be used to model the height, in feet, of an object above the ground in terms of time, in seconds, after the object was launched. According to the model, an object was launched into the air from a height of 0 feet and reached its maximum height of 3136 feet 14 seconds after it was launched. Based on the model, what was the height, in feet, of the object 1 second after it was launched?

## Two numbers, a and b, are each greater than zero, and 4 times the square root of a is equal to 9 times the cube root of b…

Mike, can you show best way to solve this insane question!? (#38 with Calculator OCT 1, 2022 SAT)

Two numbers, a and b, are each greater than zero, and 4 times the square root of a is equal to 9 times the cube root of b. If a=2/3, for what value of x is a^x equal to b?

## HI Mike…Thanks for all your help ! Here’s another question

HI Mike…Thanks for all your help ! Here’s another question:

When a buffet restaurant charges \$12.00 per meal, the number of meals it sells per day is 400. For each \$0.50 increase to the price per meal, the number of meals sold per day decreases by 10. What is the price per meal that results in the greatest sales, in dollars, from meals each day?

A) \$16.00
B) \$20.00
C) \$24.00
D) \$28.00

## QAS March 2021, Section 3, # 20.

Hi Mike… QAS March 2021, Section 3, # 20. Since “no solution,” can you consider each side a separate parallel line & use corresponding coefficients to confirm that k must equal 1/2? Or, what’s the best way to solve?

1/2x + 5 = kx + 7

In the given equation, k is a constant. The equation has no solution. What is the value of k?

## March 21 QAS Sec 3 #11

Hi Mike …can you solve & explain? (from QAS March 2021)
Section 3; #11.
y = (x-1)(x+1)(x+2)
The graph in the xy plane of the equation above contains the point (a,b). If -1 < or = a < or = 1, which of the following is NOT a possible value of b?
A) -2
B) -1
C) 0
D) 1

## Official Test 9 Section 4 #24

Hi Mike… can you work through the steps to solve Q 24 from Official Test 9 Section 4? thanks!

## In the given system of equations, a is a constant. If the system has no solutions, what is the value of a ?

Hi Mike… can you solve this and explain please? Thanks!

ax + 5y = 8
12x + 15y = 10

In the given system of equations, a is a constant. If the system has no solutions, what is the value of a ?

## In this equation, k is a constant…

x^2 – 12x +k = 0 In this equation, k is a constant. For which values of k does the equation have only one solution? I know I can set the discriminant to zero and solve for k. But is there another way to solve? Thanks!

## Hi Mike, can you explain how to solve SAT 8, Section 3, #6 as a “system of equations?” Thanks.

Hi Mike, can you explain how to solve SAT 8, Section 3, #6 as a “system of equations?” Thanks.

## Question from March SAT: Section 4 #33

Question from March SAT: Section 4 #33

## Question from March 2018 SAT: section 3 #15

Question from March 2018 SAT: section 3 #15

## Test 7 Section 4 Question 6

Hi Mike…SAT 7, Section 4, Q6: I now see the shortcut here (that both sides of the equation are perfect squares,) but if I did expand and FOIL the left side, wouldn’t I still get the correct “a” values even though it takes longer? I can’t get it to work !! Can you please show the alternate path math steps? Or is recognizing the perfect squares the ONLY way to solve this one ? Thanks!